Weak C∗-hopf Algebras: the Coassociative Symmetry of Non-integral Dimensions

نویسنده

  • GABRIELLA BÖHM
چکیده

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C∗-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C∗-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplicative unitary of Baaj and Skandalis with a partial isometry. The algebraic properties, the existence of the Haar measure and representation theory are briefly discussed. An algorithm is explained how to construct examples (in particular ones with non-integral dimensions) from non-Abelian cohomology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Coassociative C∗-Quantum Group with Non-Integral Dimensions

By weakening the counit and antipode axioms of a C∗-Hopf algebra and allowing for the coassociative coproduct to be non-unital we obtain a quantum group, that we call a weak C∗Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. This amounts to generalizing the Baaj-Skandalis multiplicative unitaries to multipicative partial isometries. E...

متن کامل

Integrals for (dual) Quasi-hopf Algebras. Applications *

A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...

متن کامل

ar X iv : m at h / 01 10 06 3 v 1 [ m at h . Q A ] 5 O ct 2 00 1 Integrals for ( dual ) quasi

A classical result in the theory of Hopf algebras concerns the uniqueness and existence of inte-grals: for an arbitrary Hopf algebra, the integral space has dimension ≤ 1, and for a finite dimensional Hopf algebra, this dimension is exaclty one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode fol...

متن کامل

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

From Entangled Codipterous Coalgebras to Coassociative Manifolds 1

In our previous works, we associated with each Hopf algebra, bialgebra and coassociative coalgebra, a directed graph. Describing how two coassociative coalgebras, via their directed graphs, can be entangled, leads to consider special coalgebras, called codipterous coalgebras. We yield a graphical interpretation of the notion of codipterous coalgebra and explain the necessity to study them. By g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011